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Purpose. The purpose of this study was to evaluate the efficiency of a neuro-fuzzy logic-based

methodology to model poorly soluble drug formulations and predict the development of the particle size

that has been proven to be an important factor for long-term stability.

Methods. An adaptive neuro-fuzzy inference system was used to model the natural structures within the

data and construct a set of fuzzy rules that can subsequently used as a predictive tool. The model was

implemented in Matlab 6.5 and trained using 75% of an experimental data set. Subsequently, the model

was evaluated and tested using the remaining 25%, and the predicted values of the particle size were

compared to the ones from the experimental data. The produced adaptive neuro-fuzzy inference system-

based model consisted of four inputs, i.e., acetone, propylene glycol, POE-5 phytosterol (BPS-5), and

hydroxypropylmethylcellulose 90SH-50, with four membership functions each. Moreover, 256 fuzzy

rules were employed in the model structure.

Results. Model training resulted in a root mean square error of 4.5 � 10j3, whereas model testing

proved its highly predictive efficiency, achieving a correlation coefficient of 0.99 between the actual and

the predicted values of the particle size (mean diameter).

Conclusions. Neuro-fuzzy modeling has been proven to be a realistic and promising tool for predicting

the particle size of drug formulations with an easy and fast way, after proper training and testing.

KEY WORDS: adaptive neuro-fuzzy inference system (ANFIS); formulation development; neuro-fuzzy
modeling; particle size; poorly soluble drugs.

INTRODUCTION

The development of pharmaceutical formulations
depends on several factors and process parameters. The
response variables relating to effectiveness, safety, and
usefulness must be optimized through a factorial relationship
by combining the causal factors. However, this effort
addresses a multiobjective optimization problem since it has
to circumvent many difficulties in the quantitative approach,
like the understanding of the actual relationship between
causal factors and individual pharmaceutical responses or the
prediction of those formulations that are desirable for as
many as possible drug properties.

Due to the complex nature of the development of phar-
maceutical formulations, some computer-based optimization
techniques have been proposed in the literature. Among
them, factorial design (FD) and response surface methodol-
ogy (RSM) are the most widely used, and several research
efforts have adopted either FD followed by an RSM (1Y3) or
solely RSM (4Y7). FD is a technique that contributes to the
structure of the data collection process. Through a designed
experiment, FD is capable of characterizing the relationships
between process factors and responses and of distinguishing
between important and unimportant factors. Nevertheless, it
is obvious that FD has no prediction possibilities of the best
formulation. Regarding the RSM procedure, it consists of (a)

1157 0724-8741/06/0600-1157/0 # 2006 Springer Science + Business Media, Inc.

Pharmaceutical Research, Vol. 23, No. 6, June 2006 (# 2006)
DOI: 10.1007/s11095-006-0021-3

1 Phoqus Pharmaceuticals Limited, 10 Kings Hill Avenue, Kings Hill,

West Malling, Kent ME19 4PQ, UK.
2 Department of Pharmaceutical Technology, University of Jena,

Lessing Strasse 8, D-07743 Jena, Germany.
3 Department of Electrical and Computer Engineering, Aristotle

University of Thessaloniki, 54124 Thessaloniki, Greece.
4 To whom the correspondence should be addressed. (e-mail:

dionysios.douroumis@phoqus.com)

ABBREVIATIONS: ANFIS, adaptive neuro-fuzzy inference system;

ANN, artificial neural network; BPS-5, PEG-5 soy sterol; EDM,

empirical-data-based model; FD, factorial design; FL, fuzzy logic;

HPMC, hydroxypropylmethylcellulose; Ini
j kð Þ; j ¼ 1; 2; : : : ;Ni; k ¼

1; : : : ; Mi; i ¼ 1; 2;i denotes the experimental phase, i.e., FD (i = 1) or

RSM (i = 2), Mi is the number of available data per causal factor, Ni is

the number of causal factors per experimental phase i, Ini
j kð Þ denotes

the value of the causal factor j for the ith experimental phase and the

kth experiment; IT, infusion technique; M25%, the 25% of the available

samples per causal factor denoting the size of the testing vector; M75%,

the 75% of the available samples per causal factor denoting the size of

the training vector; OXC, oxcarbazepine; PIDS, polarization intensity

differential scattering; PSi(k), k = 1, . . . , Mi, the particle size estimated

at the ith experimental phase and the kth experiment; PSANFIS(k), k =

1, . . . , M25%, the particle size estimated by ANFIS for the kth

experiment that belongs to the testing vector; PSANN(k), k = 1, ...,

M25%, the particle size estimated by ANN for the kth experiment that

belongs to the testing vector; RMSE, root mean-square error; RSM,

response surface methodology.



composite statistical experimental designs that prepare
systemic model formulations, (b) modeling among factors
and response variables of these formulations, (c) parameter
prediction by predicting the final responses (8Y11) or by
keeping them in the desired ranges needed to be obtained
(12) using a polynomial multiple regression analysis, and (d)
mathematical optimization algorithms for deciding the best
formulation under a set of constrained equations. However,
the prediction effectiveness of RSM is often restricted to low
levels since it is based on second-order polynomial equations
and one dependent variable (13Y15), and thus, it frequently
results in poor estimation of optimal formulations. As a
result, a multiobjective simultaneous optimization technique,
which incorporates an artificial neural network (ANN), has
been proposed to overcome the shortcomings in RSM
(13Y15). ANN is a learning system that simulates the neuro-
logical processing ability of the human brain (16), and it has
successfully been applied to address various pharmaceutical
research problems (16), achieving more accurate predictions
than those predicted by polynomial equations (14).

In this work, an extension to the ANN-based optimiza-
tion technique is introduced based on neuro-fuzzy modeling.
The concept of neuro-fuzzy models has emerged in recent
years as researchers have tried to combine the transparent,
linguistic representation of a nonlinear system with the
learning ability of ANNs. The adopted neuro-fuzzy model
consists of an adaptive neuro-fuzzy inference system
(ANFIS) (17), which combines ANNs with fuzzy logic (FL)
(18) to model nonlinear complex problems such as the
optimization of pharmaceutical formulations. FL is a power-
ful tool that has been successfully used in many signal
processing fields like system modeling and control, pattern
recognition, detection, denoising, and prediction (19,20).
Unlike the Boolean logic, FL allows the input and output
values to a fuzzy inference model to belong to multiple sets,
with different degrees of membership in each set defined by a
particular membership function (18). This facilitates the idea
that a nonlinear system can be approximated by softly
merging locally linear systems, avoiding discontinuities if
the system state moves from one local model to another (21).
This fuzzy transition is achieved using the membership
functions to calculate the validity of the different local
models for a certain state (22). The resulting structure of
the fuzzy system has the appearance of a network; hence, the
learning methods of an ANN can be easily applied to form a
neuro-fuzzy model with favorable characteristics.

The usefulness and reliability of the proposed neuro-
fuzzy approach are examined through the drug formulation
optimization with respect to its particle size. It is estimated
that about 40% of active substances during formulation
development by the pharmaceutical industry are poorly
water soluble (23Y25). For substances like oxcarbazepine
(OXC), which are classified by the Biopharmaceutics Classi-
fication System as a class II active pharmaceutical ingredient
(high permeability, low solubility), the dissolution of the drug
substance is the rate-limiting factor to absorption. It is of
importance for such substances to increase the dissolution
rate and, thus, enhance absorption and bioavailability. This
can be achieved when the poorly soluble drugs are formulat-
ed as nanoparticles. A broadly based technology applicable
to this class of molecule is applied to improve the perfor-

mance of the formulations by decreasing the particle size. A
method based on infusion technique (IT) (26) is mainly used
to produce nanoparticles. However, particle sizes below 500
nm are difficult to obtain. Thus, the introduction of a method
for formulation optimization with respect to particle size is
required. The objectives of this paper were to prepare
nanoparticle formulations using the IT and then to develop
a neuro-fuzzy model to accurately predict the particle size.

Experimental results proved the efficiency of the pro-
posed neuro-fuzzy model to accurately predict the particle
size since it exhibited a high correlation coefficient between
its predicted values and the experimental ones. By using a
limited number of inputs and with increased implementation
simplicity, the proposed neuro-fuzzy model can provide rapid
identification of the optimum formulation, contributing to
the enhancement of the understanding of the phenomenon
and the accurate assessment of the excipients in pharmaceu-
tical industry.

MATERIALS AND METHODS

Chemicals

Acetone [puriss pro analysis American Chemical Society
(p.a. ACS) > 99.5%] and propylene glycol were purchased
from Sigma-Aldrich Chemie (Steinheim, Germany). PEG-5
soy sterol (BPS-5) and hydroxypropylmethylcellulose
(HPMC), under the brand name Metolose 90SH-50, were
purchased from Nikko Chemical Co., Ltd. (Tokyo, Japan)
and Shin-Etsu Chemical Co., Ltd. (Tokyo, Japan), respec-
tively. OXC as a model compound for a BCS class II
substance was donated by Novartis Pharma A.G. (Basel,
Switzerland).

Nanoparticle Formulations

The increase in bioavailability of poorly water-soluble
drugs occurs when they are formulated as nanometer-sized
drug particles with high surface area in accordance with the
NoyesYWhitney equation (27):

dQ

dt
¼ D

h
S Cs � Cg

� �
; ð1Þ

where the dissolution rate dQ=dt expressed in terms of the
change of drug concentration, Q, as a function of time, t, is
directly proportional to the diffusion coefficient of the drug
(D), the available surface area (S), and the difference
between saturation solubility of the drug in the boundary
layer (Cs) and concentration of drug in the bulk fluid (Cg).

Polymers, such as HPMC, were found to not only
decrease the particle size by adsorption (28,29) on the hy-
drophobic drug surface but also inhibit crystallization (30) of
several drugs. The control of crystal growth of the obtained
particle size ensures formulation stability. HPMC shows high
surface activity because of the high degree of saturation (DS)
of the methoxyl and hydroxyprolyl groups. For these reasons,
HPMC was chosen as the stabilizing agent combined with the
surfactant BPS-5, which acts as an emulsifier.

The nanoparticle formulations were prepared by using
the IT (26) based on a precipitation step. According to this
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technique, a drug solution A precipitates with a polymeric
solution B in which the drug is insoluble. The precipitation
step took place under controlled conditions of infusion rate,
stirring rate, and temperature. The methodology for obtaining
nanoparticle formulations presents the following procedure:

1. Preparation of the homogeneous solution (A) composed
of OXC and BPS-5 in the water-miscible solvents acetone
and propylene glycol. The amount of HPMC 90SH-50 was
dissolved in distilled water, forming a homogeneous poly-
meric solution (B).
2. By adding solution A to solution B, a dispersion was
formed instantaneously. The drug solution (A) was infused
rapidly (infusion rate, 250 mL/min) into the polymeric
solution (B), assisted by a Millipore peristaltic pump (Milli-
pore Corporation, Dedford, MA, USA). The temperatures of
the drug and polymeric solutions were 50 and 20-C,
respectively, whereas the stirring rate of the solution B was
1000 rpm. The obtained particle size distribution was
dependent on a number of factors, including the choice of
the solvents and the polymer.
3. Acetone was removed from the produced formulations
using a Büchi rotavapor R-114 and a Büchi Vacobox B-177
(BÜCHI, Switzerland). Acetone removal occurred at 25-C
and 200 mbar for 1 h.

Preparation of Nanoparticle Formulations Based
on Experimental Design

A four-factor, two-level full FD was used for the opti-
mization study. The model study consisted of 17 experiments
(see Table I) and one center point. Analysis of the
experimental data estimated linear effects and various
combinations of interaction effects. The amounts of acetone,
propylene glycol, PEG-5 soy sterol (BPS-5), and HPMC
90SH-50 were selected as the causal factors with ranges
3Y5 mL, 1.5Y2 mL, 0.3Y0.5 g, and 50Y100 mg, respectively,
whereas OXC was kept stable (100 mg). The mean volume
diameter of the drug substance particles was selected as the
response variable.

Experimental Particle Size Analysis

The particle size was experimentally determined using
diffraction of laser light. Sizing measurements were routinely
performed using a Coulter LS 230 (Coulter Corporation,
Miami, FL, USA). Size distribution and mean volume
diameters were calculated using the Mie theory (31) in
connection with polarization intensity differential scattering
(PIDS; Beckman Coulter exclusive).

PIDS uses three wavelengths of light, filtered for
polarization in the vertical and the horizontal planes. The
combination of multiple wavelengths and two polarizations
provides information that differentiates between submicron
particle sizes and dramatically increases resolution. In
particular, the PIDS assembly measures the particle size
within the range of 0.04Y0.4 mm. Each measurement consists
of eight runs with 90 s run length.

Neuro-Fuzzy Modeling

Neuro-fuzzy models belong to the category of empirical-
data-based models (EDMs). These models rely on the fact that
the intrinsic features of the observed interactions of a complex
system and their mutual interrelations can be learned from the
data using a great number of simultaneously cooperating
simple processing units or operations. This approach allows
the extraction of information (knowledge) from these low-
level data into other forms that might be more abstract (32).
EDMs that make use of fuzzy inference system (FIS), com-
bined with adaptive networks, provide a neuro-fuzzy network
that consists of nodes and directional links through which the
nodes are connected. Part or all of the nodes are adaptive;
hence, each output of these nodes depends on the parameters
pertaining to this node. The learning rule specifies how these
parameters should be changed to minimize a prescribed error
measure (33). In a neuro-fuzzy network, the synergism of
ANNs and FL manages to model the structure of complex
systems by extracting the necessary knowledge from pairs of
crisp inputYoutput data. On the basis of the FL technology,
the model can be linguistically described by means of
inputYoutput parameterized variables and well-defined IF/
THEN rules. This human-perceived information is all
encoded, at the mathematical level, by means of Bfuzzy^
representations, which do not pursuit precision. On the other
hand, the ANN technology, by means of the precise
inputYoutput values, identifies the parameters involved in
the model by training a generic model to adaptively
approximate the relationship between the inputYoutput data
(34). Thus, by means of its structure, a neuro-fuzzy network
manages to not only deal with the uncertainties of complex
systems but also provide their model with a transparent and

Table I. Experimental Design of Oxcarbazepine (100 mg)

Formulation

number

Acetone

(3Y5 mL)

PG

(1.5Y2 mL)

BPS-5

(0.3Y0.5 g)

HPMC

90SH-50

(50Y100 mg)

Size

(mean

diameter,

mm)

1 3 1.5 0.3 50 0.540

2 5 2.0 0.5 50 0.599

3 3 2.0 0.3 100 0.478

4 3 1.5 0.5 100 0.681

5 3 2.0 0.5 50 0.876

6 3 1.5 0.5 50 0.975

7 5 2.0 0.3 50 0.625

8 3 2.0 0.5 100 0.648

9 5 2.0 0.3 100 1.054

10 5 1.5 0.5 50 0.932

11 4 1.75 0.4 80 0.616

12 5 1.5 0.5 100 1.176

13 5 1.5 0.3 100 0.828

14 5 1.5 0.3 50 0.945

15 3 2.0 0.3 50 0.515

16 3 1.5 0.3 100 0.594

17 5 2.0 0.5 100 1.052

Factors: acetone (3Y5 mL), propylene glycol (1.5Y2 mL), BPS-5

(0.3Y0.5 g), HPMC 90SH-100 (50Y100 mg). Response: particle size

(mean volume diameter, in microns). Total volume: 13 mL; infusion

rate(org): 250 mL/min; T(aq): 25-C; T(org): 50-C; pH: 7.
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interpretable structure. Furthermore, based upon this mod-
eling, a neuro-fuzzy network manages to generalize; hence, it
produces predictive outputs when presented with new
Bproper^ input. The theoretical details of the neuro-fuzzy
modeling can be found in (33,34). Moreover, a simplified
introduction regarding the general issues of FL modeling,
fuzzy sets, membership functions, and fuzzy clustering is
provided in (19). However, relevant features and context that
refer to the adopted means of neuro-fuzzy modeling, i.e.,
ANFIS (17), are described below.

ANFIS Structure and Implementation

The adaptive neuro-fuzzy inference system is expected
to estimate the particle size (mean volume diameter) when
presented with values of the four causal factors. To infer this
response value, ANFIS is trained to evaluate the relation
between the particle size and the four causal factors.
However, this initially unknown relation is hidden within
the empirical data that are obtained from the experimental
particle size analysis (see previous section and Table I).
Therefore, ANFIS training is an equivalent procedure to
learning from empirical data. ANFIS adopts a five-layer,
feed-forward network structure (17), as depicted in Fig. 1.
During training, at each level, the parameterized nodes
perform specific functions of the incoming signal, as follows.

Suppose, for simplicity, that ANFIS rule base contains two
rules of Sugeno type (17) and is fed by two causal factors only:

R1: IF X is A1 AND Y is B1, THEN f1 = p1X + q1Y + r1;

ELSE,
R2: IF X is A2 OR Y is B2, THEN f2 = p2X + q2Y + r2,

where X,Y correspond to any two of the four causal factors
and Ai, Bi and pi, qi, and ri, with i = 1, 2, are linguistic
variables (such as Bvery low,^ Blow,^ Bmedium,^ and Bhigh^)
and constants, respectively (35). The ith node function of the
first layer performs fuzzification of the incoming signal as
follows (see also Fig. 1):

O1
Xi
¼ �

Ai
Xð Þ;O1

Yi
¼ �

Bi
Yð Þ; i ¼ 1; 2; ð2Þ

where �
Ai
; �

Bi
denote the membership functions that specify

the degree to which X and Y belong to the corresponding
linguistic variables Ai and Bi, respectively. O1

Xi
and O1

Yi

describe the X and Y causal factors, respectively, using fuzzy
values (e.g., low or medium X; very low or high Y ). The
shape of the continuous and piecewise differentiable mem-
bership functions is described by parameters. These are the
premise parameters and are adjusted by using the learning
algorithm. Each node of the second layer O2

i presents the
firing strength of a rule, estimated by multiplying the
incoming membership values of the previous layer:

O2
i ¼ wi ¼ O1

Xi
�O1

Yi
; i ¼ 1; 2: ð3Þ

The ith node of the third layer O3
i normalizes the firing

strength of the rules:

O3
i ¼ wi ¼

wi

w1 þ w2
; i ¼ 1; 2: ð4Þ

The node function at the fourth level is of the form:

O4
i ¼ wifi ¼ wi piX þ qiY þ rið Þ; i ¼ 1; 2; ð5Þ

where {pi,qi,ri} are the consequent parameters. A single node
constitutes the fifth layer, which computes the overall crisp
output:

O5
1 ¼

X

i

wifi ¼

P

i

wifi

P

i

wi
: ð6Þ

The overall development of ANFIS requires the follow-
ing primary procedures:

1. Data acquisition. The experimental procedure provides
the data of interest (both for the four inputs and the one
output) as presented in Table I. In the cases of limited
number of available data, the performance of ANFIS is
enhanced by interpolating the experimental data.
2. Definition of the training and testing data set. From the
overall inputYoutput data, 75% are normally used for the

Fig. 1. The five-level organization of the ANFIS architecture (17).
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training procedure, whereas the remaining 25% are used for
model testing, as described below.
3. Training procedure. The inputYoutput pairs are all pre-
sented to the system during ANFIS training. Learning is
implemented in epochs to define the values of the premise
and consequent parameters by minimizing the root mean
square error (RMSE) (17). Each epoch foresees two passes: a
forward pass of the signal, where the premise parameters are
kept fixed and the consequent parameters are calculated by
the least squares method, and a backward pass, where the
consequent parameters are kept fixed and the premise
parameters are updated by the gradient descent method (17).
4. Testing procedure. The testing data set is presented to the
model, and the equivalent RMSE is calculated. When this
value is within a predefined accuracy, the generalization
ability of the model is verified. Such generalization is equal
to prediction of the particle size that corresponds to a
predefined set of values of the causal factors.

Figure 2 depicts the procedures followed for the particle
size estimation when using FD followed by RSM (Fig. 2a)
and ANFIS (Fig. 2b). From this figure, it is clear that ANFIS
involves an iterative procedure to refine the membership
functions and the fuzzy rules that better describe the
mapping from the input space to the output space, without,

however, requiring any new experimental phase. Once
ANFIS is trained, it can immediately estimate the response
for any value of the input pairs (Fig. 2b). On the other hand,
FD usually requires the follow-up with the RSM experimen-
tal phase (Fig. 2a) to achieve an estimation of the optimized
response. Moreover, the whole procedure should be restarted
every time new values of the input pairs appear.

ANFIS was implemented using Matlab (Version 6.5,
Release 13, 2003, The Mathworks, Inc., Natick, MA, USA).
In particular, the Matlab Fuzzy Toolbox (35) was adopted as
the means for building ANFIS. To this end, the data matrix
was structured in the form of five columns, with the first four
corresponding to the input vectors (the four causal factors)
and the fifth one to the output vector (response). Before the
analysis, the size of the training data set of Table I (12
samples per causal factor, corresponding approximately to
75% of the total 17 samples per causal factor) was increased
up to 750 samples per causal factor, using cubicYspline
interpolation (36). For each of the causal factor, four
membership functions of a Gaussian-bell shape (35), uni-
formly distributed in their universe of discourse, and four
linguistic variables, i.e., very low, low, medium, and high,
were defined as the initial conditions of ANFIS, i.e., before
the training procedure. The target RMSE for the training
procedure was set to 0.005.

Fig. 2. A block diagram of the procedures followed for the particle size estimation when using

(a) FD followed by RSM and (b) ANFIS (training and testing phases).
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RESULTS AND DISCUSSION

The experimentally derived particle sizes (mean volume
diameter values) for a series of 17 experiments with different
setting of the input pairs are presented in Table I (last
column). Based on these data, the trained ANFIS has
resulted in 256 fuzzy rules, exhibiting a training RMSE equal
to 0.0045 (<0.005) with fast convergence (<250 epochs). The
estimated membership functions for each of the four causal
factors are illustrated in Fig. 3. From this figure, it is evident
that the bell shape of the membership functions was
preserved after training; however, the inputYoutput relations
have affected the uniformity of the membership functions
across their universe of discourse, mainly for the case of
propylene glycol (Fig. 3b) and BPS-5 (Fig. 3c).

For testing the efficiency of the trained ANFIS to
accurately predict the particle size of unknown values of the
four causal factors, the testing data set (5 samples per causal
factor, corresponding approximately to 25% of the total 17
samples per causal factor) was presented to the model. The
results of this testing procedure are presented in Fig. 4. From
this figure, it is clear that ANFIS predicts the values of the
particle size, i.e., PSANFIS(k), k = 1, ..., 5, with high accuracy,
when compared to the experimentally derived ones, i.e.,
PS(k), k = 1, ..., 5. This is further justified by the
excellent correlation coefficient, r2 = 0.99, resulting from
the comparison between the ANFIS output and the
corresponding experimental data. These results denote that
neuro-fuzzy modeling of pharmaceutical formulations could
successfully be used to predict the particle size. In a similar
optimization problem (14) that, however, did not involve the
same factors and response variable, ANNs showed smaller
prediction efficiency than the one exhibited by ANFIS here.

To directly compare the performance of ANNs with the one
from ANFIS, an ANN was set up, trained, and tested with
the same data sets used for the ANFIS training and testing
procedures, respectively. Similar to (4), an ANN with four
causal factors (acetone, propylene glycol, BPS-5, and HPMC
90SH-50), one hidden layer with 12 neurons (three times the
input number), and one response variable (mean volume dia-
meter of the drug substance particles) was structured; a sigmoid

Fig. 3. The estimated membership functions of the trained ANFIS for each of the four causal factors, i.e., (a)

acetone, (b) propylene glycol, (c) BPS-5, and (d) HPMC 90SH-100. In all cases, the solid, dashed, dotted, and

dashed-dotted lines denote the linguistic variables very low, low, medium, and high, respectively.

Fig. 4. Testing procedure results. The circles denote the plotting of

the experimentally produced particle size values, i.e., PS(k) with the

ones predicted by the trained ANFIS, i.e., PSANFIS(k), whereas the

stars denote the plotting of PS(k) with the particle size values

predicted by the trained ANN, i.e., PSANN(k). The solid line denotes

the position of the congruence of the values (x = y).
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function was used as the nonlinear function employed in the
hidden layer, whereas a back-propagation training algorithm
was applied for training the ANN. The latter refers to the
LevenbergYMarquardt algorithm (37), which is a fast training
algorithm for networks of moderate size (i.e., trains neural
networks at a rate 10 to 100 times faster than the usual
gradient descent back-propagation method) and has memory
reduction feature for use when the training set is large (38).
The target RMSE for the training procedure was set to 0.005,
which was reached in 573 epochs. The ANN was built using
the Matlab Neural Networks Toolbox (38).

After training, the ANN was tested for its prediction
efficiency, resulting in the predicted values of the mean
particle size, i.e., PSANN(k), k = 1, ..., 5, superimposed on the
plot of Fig. 4 (denoted with stars). From this figure, it is clear
that ANN predicted less accurate (over-/underestimated)
values of the mean particle size when compared both with
the experimental ones (distance from the diagonal line) and
those predicted with ANFIS (circles). This is further justified
by the correlation coefficient, r2 = 0.84, resulting from the
comparison between the PSANN(k) and PS(k), k = 1, ..., 5.

The above results indicate that ANFIS, as a combination
of ANNs with FL, increases the generalization efficiency of
ANNs and could provide better prediction ability in many
case-study optimization of pharmaceutical formulations.

Apart from its prediction efficiency, ANFIS reveals
information about the system being modeled. This is
evidenced by the three-dimensional diagrams of the response
variable as a function of the causal factors (in pairs of two), as
presented in Fig. 5. From this figure, it is apparent that
nonlinear relationships between the causal factors and the
response variable were well represented with response surface
predicted by ANFIS. This complies with the general notion
that the quantitative relationships between causal factors and
response variables in vitro are thought to be complex and
nonlinear (14). From the results of Fig. 5, it appears that
ANFIS captures such relationships and could be used as a
tool where approximations of such relationships are required.

Clearly, ANFIS structure allows the elimination of many
experimental phases (see Fig. 2). Even with a few inputs,
ANFIS has resulted in successfully predicting the particle
size. Consequently, the repetition of the experiments in-
volved in FD and RSM and the low efficiency due to the
weak optimization procedures based on second-order poly-
nomial equations could be waived by adopting a properly
trained ANFIS. In this vein, future studies would include
efforts to increase the number of compounds for which all
input descriptors are available, to create a larger training
data set that might better represent the data space; hence, an
improved model, in terms of its generalization capability,

Fig. 5. Response surfaces of the response variable (particle size) predicted by ANFIS as a function of

the four causal factors, i.e., acetone, propylene glycol, BPS-5, and HPMC 90SH-100, in pairs of two. The

values of the two other causal factors remaining constant for a given surface response are the following:

(a) BPS-5 = 0.4, HPMC 90SH-100 = 75; (b) propylene glycol = 1.75, HPMC 90SH-100 = 75; (c)

propylene glycol = 1.75, BPS-5 = 0.4; (d) acetone = 4, HPMC 90SH-100 = 75; (e) acetone = 4, BPS-5 = 4;

(f) acetone = 4, propylene glycol = 1.75.
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could be achieved. Moreover, modifications in the input
vectors of ANFIS will be considered toward the integration
of experts’ insight into the data structure. This is facilitated
by the linguistic character of the fuzzy values of its variables.
In this way, the neuro-fuzzy model will boost its ability to
gain better understanding of the essential components of
particle size, which could contribute to ideally model such
drug formulations.

CONCLUSION

A neuro-fuzzy model, namely, ANFIS, has been pro-
posed for the prediction of the drug particle size using four
causal factors. The proposed scheme combines ANNs with FL,
thereby increasing their generalization efficiency. After prop-
er training and testing using experimental data, ANFIS results
in a prediction of the particle size of higher accuracy than that
of an ANN. Furthermore, ANFIS sheds light on the intrinsic
relationships between the causal factors and the response
variable, identifying their underlying complex and nonlinear
aspects. With proper training and due to its feasible imple-
mentation, ANFIS can be used as a reliable tool for the pre-
diction of the particle size and can contribute to the accurate
evaluation of the excipients in pharmaceutical industry.
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metallösungen. Ann. Phys. 25:377Y445 (1908).

32. U. M. Fayyad, G. Piatetsky-Sapiro and P. Smyth. From data
mining to knowledge discovery: an overview. In U. M. Fayyad,
G. Piatetsky-Sapiro, P. Smyth, and R. Uthurusamy U. M.
Fayyad G. Piatetsky-Sapiro P. Smyth and R. Uthurusamy
(eds.), Advances in Knowledge Discovery and Data Mining,
AAAI Press/MIT Press, Menlo Park, CA, 1996, pp. 37Y54.

33. J.-S. R. Jang. Neuro-Fuzzy Modeling: architecture, analyses and
applications, Ph.D. thesis, University of California, Berkeley,
CA, 1992.

34. L. H. Tsoukalas. Fuzzy and Neural Approaches in Engineering,
Wiley & Sons. Inc., New York, 1997.

35. Fuzzy Logic Toolbox User’s Guide. Version 3, The Mathworks,
Inc., Natick Massachusetts, 2003.

36. Signal Processing Toolbox User’s Guide. Version 3, The Math-
works, Inc., Natick Massachusetts, 2003.

37. M. T. Hagan and M. Menhaj. Training feedforward networks
with the Marquardt algorithm. IEEE Trans. Neural Netw. 5(6):
989Y993 (1994).

38. Neural Networks Toolbox User’s Guide. Version 3, The Math-
works, Inc., Natick Massachusetts, 2003.

1164 Douroumis, Hadjileontiadis, and Fahr


